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ABSTRACT
The rise of embodied artificial intelligence (embodied AI) marks a pivotal shift in AI, moving it from the digital realm into the
physical world. This transition aims to create autonomous robots capable of perceiving, reasoning, and acting in complex
unstructured environments. Achieving this goal demands unprecedented capabilities for robots to comprehensively perceive
both their external surroundings and internal states. However, traditional sensors cannot meet the requirement of robotic
perception systems due to limitations in size and power consumption. In this context, micro‐electromechanical system (MEMS)
technology emerges as a critical enabler for advancing next‐generation robotic perception capabilities. Its core advantages,
including miniaturization, low power consumption, high integration, and cost‐effectiveness, make it ideal for this role. This
review provides a comprehensive overview of the latest advancements in MEMS sensing technologies specifically designed for
embodied AI robots. By integrating diverse MEMS sensors, such as those for ranging, inertia, tactile, hearing, and olfaction,
robots can achieve rich multimodal perception. These highly integrated sensing systems provide a robust technological foun-
dation for robot applications in various fields, demonstrating the immense potential of MEMS technology in promoting au-
tonomy, safety, and interactive capabilities in robots. In essence, the future of embodied AI will be built upon a powerful
symbiosis: MEMS providing the rich semantic‐aware 'sensory neurons' and AI models providing the 'cognitive brain'. This
fusion promises to usher in an era of truly perceptive and intelligent machines.

1 | Introduction

The convergence of artificial intelligence (AI) and robotics has
heralded a new era of embodied AI, a paradigm shift that moves
AI from digital confines into the physical world [1]. Unlike
traditional AI systems that process disembodied data, embodied
agents, such as autonomous robots [2, 3], are designed to perceive,

reason, and act within complex unstructured environments. The
ultimate goal is to create machines capable of performing so-
phisticated tasks with human‐like dexterity and adaptability from
autonomous driving and industrial automation to in‐home
assistance and surgical operations [4–7]. This ambition places
an unprecedented demand on the robot's ability to comprehen-
sively understand its surroundings and its own state.
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The specific perceptual requirements are dictated by the robot's
operating environment and intended tasks as shown in Figure 1.
For instance, in industrial logistics or autonomous driving, a
robot must navigate dynamic cluttered spaces [11, 12]. This ne-
cessitates a sophisticated 3D environmental awareness for map-
ping and collision avoidance, primarily furnished by ranging
sensors, such as LiDAR and ultrasonic array, coupled with

inertial sensors to precisely track its own motion and orientation,
especially in GPS‐denied areas [13]. In the delicate context of
medical robotics, a surgical robot assisting in minimally invasive
procedures must not only see but also “feel”. It relies on highly
sensitive force and tactile sensors at its end‐effector to differen-
tiate between healthy and diseased tissue or to apply pre-
cise tension during suturing [14]. Similarly, for human‐robot

FIGURE 1 | MEMS sensors of embodied AI robots. Reproduced from ref. [21]. Copyright 2019 MDPI. Reproduced from ref. [22]. Copyright 2022
MDPI. Reproduced from ref. [23]. Copyright 2024 Springer Nature. Reproduced from ref. [24]. Copyright 2023 Wiley‐VCH GmbH. Reproduced from
ref. [25].CC BY 4.0. Reproduced from ref. [26]. Copyright 2022 American Chemical Society. Reproduced from ref. [27]. Copyright 2024 Springer
Nature. Reproduced from ref. [28]. CC BY 4.0. Reproduced from ref. [29]. Copyright 2010 Springer Nature. Reproduced from ref. [30]. Copyright
2023 IEEE. Reproduced from ref. [8]. Copyright 2022 American Chemical Society. Reproduced from ref. [9]. Copyright 2023 American Chemical
Society. Reproduced from ref. [10]. Copyright 2023 MDPI.
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interaction in a home‐care or collaborative manufacturing
setting, a robot requires proximity and tactile sensors to ensure
safe physical contact, alongside microphones for seamless voice‐
based communication. Furthermore, in extreme environments,
such as disaster response or military reconnaissance, a search‐
and‐rescue robot must navigate treacherous unstable terrain us-
ing robust inertial measurement units (IMUs) and ranging sen-
sors [15]. Simultaneously, it may employ microphones to detect
faint sounds of survivors buried under rubble and olfactory sen-
sors to identify hazardous chemical leaks, thus providing critical
intelligence that is beyond human sensory limits. These scenarios
underscore the critical need for a rich multimodal sensory suite to
enable robust and intelligent robotic behavior.

Although these sensing modalities are conceptually established,
their physical realization at the scale and performance required
by modern robotics presents a formidable challenge. Traditional
approaches to fabricating these sensors often create a critical
bottleneck. High‐performance systems, such as tactical‐grade
IMU or mechanical scanning LiDAR, are typically bulky,
power‐hungry, and prohibitively expensive. Conversely, their
lower‐cost alternatives have historically suffered from inadequate
performance, stability, and integration density. This fundamental
trade‐off has long hindered the development of robots with
the dense, distributed, and high‐fidelity sensory systems need-
ed for true autonomy. Herein, micro‐electromechanical system
(MEMS) technology emerges as the key to breaking this impasse.
Characterized by its profound miniaturization, low power con-
sumption, high integration density, and cost‐effective batch
fabrication, MEMS technology is ideally suited to serve as the
scalable high‐performance sensory backbone for next‐generation
robots [16–20]. By integrating micromechanical structures with
electronic circuits on a single chip, MEMS sensors provide a
powerful and versatile toolkit to endow robots with sophisticated
perceptual capabilities.

To this end, this review provides a comprehensive overview of the
state‐of‐the‐art in MEMS sensing technologies tailored for
embodied AI robots. It systematically surveys the fundamental
principles, recent technological breakthroughs, and critical ro-
botic applications of several key MEMS sensor categories. The
document is structured as follows: it begins with MEMS ranging
sensors that enable environmental mapping and obstacle avoid-
ance. Subsequently, it delves into MEMS inertial sensors, the core
components for attitude estimation and navigation. The discus-
sion then explores MEMS force and tactile sensors, which are
crucial for dexterous manipulation and safe interaction. Finally, it
touches upon other emerging modalities, such as MEMS micro-
phones and olfactory sensors, that further enrich robotic
perception. By synthesizing advancements across these domains,
this review aims to provide researchers in both the MEMS and
robotics communities with a holistic understanding of the current
landscape and to illuminate future directions for developing the
advanced sensory systems that will bring embodied AI to life.

2 | Visual Perception

Accurate environmental perception is a cornerstone of robotic in-
telligence, enabling essential functionalities such as autonomous

navigation, object manipulation, and safe human‐robot interac-
tion. Central to this perceptual capability are ranging sensors,
which measure the distance to surrounding objects. The advent of
MEMS technology has revolutionized this domain by enabling the
production of ranging sensors that are miniaturized, low‐power,
and cost‐effective. These sensors function by monitoring distance‐
dependent alterations in their micromechanical structures, such as
deformation or vibrational modes, or through characterizing the
propagation dynamics of emitted waves. Based on their underlying
physical principles, the most prominent MEMS ranging technolo-
gies for robotics include laser‐based, ultrasonic, and capacitive
sensing. This technological diversity provides a versatile toolkit of
perception solutions, positioning MEMS as a key enabler for the
next generation of intelligent robots.

2.1 | MEMS Laser Ranging Sensors

Laser ranging calculates the distance between objects and sensors
by emitting laser beams to target surfaces and analyzing reflected
signals. LiDAR, as a representative laser ranging technology, has
been widely adopted in robotic environmental perception,
autonomous navigation, and obstacle detection. The current
mainstream test is time‐of‐flight (ToF) technology. The ToF
technology determines target distances by measuring time delay
between emitted laser pulse and returned echo, favored for its
rapid response and high precision. Building on this foundation,
MEMS laser ranging sensors utilize miniaturized laser sources
and micromirrors to achieve high‐precision long‐distance mea-
surements. This technology offers a compelling set of advantages,
including high accuracy (often at the millimeter level for short
ranges), long range (easily exceeding 100 m), and noncontact
measurement. Furthermore, MEMS integration drastically re-
duces the size, power consumption, and cost of these systems,
making them viable for portable applications. Compared to con-
ventional LiDAR systems, these sensors exhibit superior advan-
tages in power efficiency, integration density, and resolution,
making them particularly suitable for dynamic scenarios.

Research on MEMS laser ranging sensors is extensive. As shown
in Figure 2a, based on motion axes, they are categorized into 1D
and 2D MEMS mirrors. The 1D MEMS mirror enables efficient
unidirectional scanning via a single motion axis, whereas the 2D
MEMS mirror counterpart achieves full‐field coverage through
coordinated dual‐axis actuation. For 1D MEMS mirrors, Bascetta
et al. proposed two distance feedback methods [35], geometry
consistent trajectory and time consistent trajectory, to apply laser
ranging to robot obstacle avoidance. Chen et al. proposed an ul-
tratiny line laser range sensor with a precision deviation of less
than 2 cm [43], which is used for environmental detection in
miniature robots. Furthermore, researchers have achieved long‐
distance laser imaging using a 2D MEMS mirror. Yang et al.
proposed a 360° LiDAR system based on a MEMS mirror that
achieves a high angular resolution of 0.07° � 0.027° [44]. This
enhances the panoramic scanning and imaging capabilities of the
LiDAR system, providing more precise 3D scanning applications
for robotic navigation. Trocha et al. designed a soliton‐comb
ranging system and integrated it with chip‐scale nanophotonic
phased arrays [39], achieving an ultra‐fast acquisition rate of
100 MHz, as illustrated in Figure 2b. This system also reduced the
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Allan deviation to 12 nm, making a compact high‐speed ranging
system possible for large‐scale applications. Zolfaghari et al.
achieved ultrawide scanning angles by designing a folding
mechanism that enables the cascading of multiple piezoelectric
MEMS devices [45]. Zhang et al. fabricated a MEMS LiDAR with a
wide field of view on a 10� 11 mm2 silicon photonic chip [40]. As
shown in Figure 2c, this device has 16,384 pixels and achieves 3D
imaging with a distance resolution of 1.7 cm. In summary,
through structural innovations and multiactuation synergies,
MEMS laser ranging sensors have achieved breakthroughs in
high resolution, wide‐angle scanning, and long‐range detection.
These advancements provide critical technical support for three‐
dimension environmental perception in intelligent robotics and
autonomous driving applications.

The dense point clouds generated by MEMS LiDAR are partic-
ularly amenable to processing by deep learning models, such as
PointNetþþ or occupancy grid mapping algorithms, enabling
sophisticated functions, such as semantic segmentation of the
environment and dynamic object tracking, which are critical for
autonomous navigation.

2.2 | MEMS Ultrasonic Ranging Sensors

MEMS ultrasonic ranging sensors generate mechanical vibra-
tions via MEMS‐structured diaphragms to emit ultrasonic sig-
nals. Reflected signals from targets act on the diaphragm,

FIGURE 2 | MEMS ranging sensors. (a) Principle of laser ranging sensors. Reproduced from ref. [38]. Copyright 2020 MDPI. (b) Ultrafast optical
ranging using microresonator soliton frequency combs. Reproduced from ref. [39]. Copyright 2018 The American Association for the Advancement of
Science. (c) MEMS LiDAR achieves 3D imaging. Reproduced from ref. [40]. Copyright 2022 Springer Nature. (d) Principle of ultrasonic ranging
sensors. Reproduced from ref. [32]. Copyright 2025 Wiley‐VCH GmbH. (e) Ultrasonic proximity sensing skin for robot safety control by PMUTs.
Reproduced from ref. [41]. Copyright 2022 IEEE. (f) Soft robotic perception system with ultrasonic auto‐positioning. Reproduced from ref. [9].
Copyright 2023 American Chemical Society. (g) Principle of capacitive ranging sensors. Reproduced from ref. [32]. Copyright 2024 Wiley‐VCH
GmbH. (h) Human‐robot interaction. Reproduced from ref. [33]. Copyright 2024 IEEE. (i) High‐sensitivity noncontact detection. Reproduced
from ref. [42]. Copyright 2024 Wiley‐VCH GmbH.
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converting mechanical vibrations into voltage outputs. The
predominant measurement method remains ToF technology,
which calculates distances by measuring the time delay between
signal emission and reception, combined with sound velocity.
Compared to laser ranging, ultrasonic systems exhibit shorter
detection ranges due to slower sound propagation but demon-
strate superior immunity to electromagnetic and environmental
interference, making them ideal for short‐range applications.

Based on energy conversion mechanisms, MEMS ultrasonic sen-
sors are categorized into piezoelectric micromachined ultrasonic
transducers (PMUTs) and capacitive micromachined ultrasonic
transducers (CMUTs). PMUTs leverage the inverse/positive
piezoelectric effects of materials for ultrasound generation and
reception, offering high sensitivity and ease of integration. CMUTs
rely on capacitance variations between diaphragm and substrate
for signal transduction, providing broader bandwidth. These in-
novations provide new approaches to enhance robotic environ-
mental perception. As shown in Figure 2d, with advantages in
short‐range precision and environmental robustness, MEMS ul-
trasonic sensors are widely deployed in indoor robotics, proximity
sensing, and obstacle avoidance. Luo et al. proposed a broadband
ultrasonic rangefinder with merits of a small blind area and high
accuracy [46]. This device features an ultrasmall blind zone of
5 mm and an ultrahigh accuracy with an error of 0.3 mm, making it
suitable for short‐distance ranging. Addressing robotic safety, Tong
et al. designed a flexible ultrasonic proximity‐sensing skin inte-
grated onto robotic arms (Figure 2e), significantly improving
collision avoidance in human‐robot collaboration [41]. Shi et al.
integratedultrasonic and triboelectric sensors for soft robotic object
grasping (Figure 2f), achieving both remote target localization and
multimodal cognitive capabilities [9]. Emerging applications
include curved‐surface PMUTs for conformal object detection and
hybrid optical‐PMUT systems for intracavity imaging in contin-
uum robots [34]. Through continuous advancements, MEMS ul-
trasonic sensors have become pivotal in robotic navigation, safety
assurance, and dynamic perception, driving intelligent upgrades in
robotic systems.

2.3 | MEMS Capacitive Ranging Sensors

MEMS capacitive ranging sensors measure distance through
capacitance variations between objects and sensor electrodes. The
principle of a MEMS capacitive ranging sensor is to utilize the
change in distance between the two plates of a capacitor caused by
a physical quantity under measurement. This change alters the
capacitance value, which is then amplified, linearized, and con-
verted into a standard electrical signal output by a precision in-
tegrated circuit. This technology represents a seamless
integration of mechanical motion and electronic signals in a
miniaturized sensor. This technology represents a seamless
integration of mechanical motion and electronic signals in a
miniaturized sensor. This approach endows MEMS capacitive
sensors with exceptional advantages, primarily extremely high
precision and resolution (capable of detecting sub‐nanometer
changes), low power consumption, and minimal heat genera-
tion. Their simple structure also makes them robust, cost‐
effective, and resistant to environmental light interference.
However, the fundamental operating principle also dictates their

main limitations. They are inherently short‐range devices, typi-
cally effective from a few millimeters up to a few centimeters.
Their performance is also highly susceptible to environmental
interference, such as humidity, temperature fluctuations, and the
presence of dust, oil, or other contaminants. Additionally, they
require precise calibration and canbe sensitive to electromagnetic
interference. Consequently, these sensors excel in scenarios
requiring micron or nanometer‐level accuracy over tiny dis-
tances. As shown in Figure 2g, when a conductor approaches an
electrode, it is influenced by the external electric field generated
by the electrode, inducing a charge distribution on its surface [36].
This change in charge distribution affects the existing free charge
distribution on the electrode, thereby altering its self‐capacitance.
Unlike line‐of‐sight technologies like LiDAR and ultrasound,
capacitive sensors excel in non‐contact proximity detection of a
wide range of materials, including insulators. This unique capa-
bility makes them an ideal complement, particularly for appli-
cations, such as hidden obstacle detection or safe human‐robot
interaction, where direct line‐of‐sight may be occluded. Different
from conventional sensors, they detect both metallic and insu-
lating materials [37], excelling in microdistance measurements
for robotic proximity sensing and precision positioning.

As robotics advances toward intelligence and miniaturization,
MEMS capacitive sensors play a critical role due to their high
sensitivity, compactness, and low power consumption. They
enhance robotic spatial perception through noncontact displace-
ment detection, enabling applications fromrobotic armpositioning
to tactile feedback and human‐robot interaction. For autonomous
mobile robots and drones, MEMS capacitive proximity sensors can
penetrate insulating materials, such as paper and plastic by
generating electric or magnetic fields, thereby enabling safe
obstacle avoidance under non‐line‐of‐sight conditions. Li et al.
developed a flexible laser‐patterned copper electrode sensor [31],
achieving 200 mm detection ranges for battery‐powered service
robots. Such sensors penetrate non‐metallic materials to identify
hidden obstacles, complementing LiDAR's limitations in trans-
parent object recognition. Li et al. designed a full‐range proximity‐
tactile sensing module that uses a capacitive sensor for short‐range
proximity sensing [32], achieving an ultrahigh accuracy of 96.47%
and excellent stability. Additionally, capacitive sensors are widely
used in the field of human‐robot interaction. As shown in
Figure 2h, Wang et al. designed a 6‐DOF capacitive robot skin [33].
This skin uses a hierarchical proximity‐sensing method to classify
the sensing state and employs a distance‐reduction and collision‐
avoidance‐based velocity‐generation method to achieve smooth
and rapid velocity decay, ensuring safety and flexibility in human‐
robot interaction. Researchers have extensively investigated
capacitive microstructure sensors for robotic noncontact detection.
For instance, as depicted in Figure 2i, Liu et al. proposed a
labyrinth‐patterned electrode to improve proximity sensing capa-
bilities [42], which they applied to human‐machine interaction
interfaces. Similarly, Huang et al. introduced an Archimedean
spiral electrode [8], which effectively increased the intensity and
depth of the fringe field along the Z‐axis. This innovation assists
machines in precisely sensing objects throughout the entire pro-
cess, from proximity to touch.

The noncontact capability and flexible design of MEMS capac-
itive sensors endow robots with human‐like perception. With
breakthroughs in materials and fabrication techniques, next‐
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generation sensors will evolve toward multimodal intelligence,
propelling robotics toward higher autonomy, safety, and inter-
active capabilities.

2.4 | MEMS Ranging Sensors for Robots

A robot system, especially one based on closed‐loop feedback
control, relies on the strict implementation of real‐time data pro-
cessing and extremely low latency for its stable and efficient
operation. This need stems from a dynamic closed‐loop process:
sensors must continuously and at a high frequency perceive the
environment, such as detecting obstacles. The resulting data must
then be processed and computed rapidly, ultimately driving actu-
ators to make precise low‐latency responses, with a required delay
typically under 100 ms. This “sense‐compute‐act” closed loop must
operate at high speed without interruption. MEMS sensors are
fundamentally suited for these applications. The update rate for
MEMS ranging sensors is typically designed to be higher than
1 kHz. This rapid dataflow is crucial for a robot to respond to its
environment promptly and accurately. This demonstrates that the
high data rate and low latency of MEMS sensors are more than just
performance metrics. They are essential for achieving adaptive
closed‐loop control in practical applications. The ability of these
sensors to provide high‐speed low‐latency data are critical for
autonomous systems that must make split‐second decisions.
Additionally, MEMS ranging sensors can be designed to a
millimeter‐scale size, enabling either high‐precision measure-
ments of around 1 mm or large‐range measurements of 2 m. For
robotic sensing applications, different types of sensors are required
depending on the specific application scenario. According to the
results in Table 1, laser ranging sensors can achieve long‐distance
measurements and have a high recognition capability, making
them suitable for obstacle avoidance in long‐range measurement
scenarios. When used for close‐range measurements, their high
precision can be applied to 3D imaging.Ultrasonic ranging sensors,
due to their excellent anti‐interference and distance‐sensing ca-
pabilities, are more often used for environmental perception and
safe operation. Capacitive ranging sensors have a relatively smaller
measurement range but offer better sensitivity, making them more
suitable for proximity sensing or human‐machine interaction. This
allows them to meet both the high‐integration size requirements of
robots and the varying measurement range demands.

3 | Inertial Perception And Course Perception

As one of the most representative products of MEMS technol-
ogy, inertial sensors specialize in measuring acceleration,

angular velocity, and orientation changes. Compared with
traditional counterparts, MEMS devices achieve a size reduction
of over tenfold and power consumption lowered to milliwatt‐
level. This technological innovation enables the embedding of
high‐dynamics multidegree of freedom motion perception into
diverse robotic platforms, allowing real‐time attitude feedback
via MEMS inertial sensors across applications ranging from
microdrones to heavy‐duty industrial robotic arms.

As shown inFigure 3a, MEMS inertial sensors primarily consist of
accelerometers gyroscopes. On the other hand, magnetometer is a
different type of sensor used tomeasure the strength anddirection
of a magnetic field. Its function is to provide a heading reference,
typically by measuring the Earth's magnetic field, similar to a
compass. By measuring the Earth's magnetic field, a magnetom-
eter provides a stable external reference point. This allows robotic
systems to determine their heading and correct for the long‐term
drift that plagues pure inertial navigation. Therefore, magne-
tometers are often used to complement inertial sensors, with the
combination of the two enabling a high degree of accuracy and
reliability. By measuring physical parameters, including accel-
eration, angular velocity, and magnetic fields, they enable real‐
time determination of object orientation. Robotic autonomy
critically depends on precise proprioception—the sense of its own
state and motion. MEMS inertial sensors form the very founda-
tion of this capability. For instance, drones necessitate real‐time
monitoring of attitude angles during hovering to prevent over-
turning, while bipedal robots dynamically adjust their center‐of‐
mass balance through acceleration data analysis during locomo-
tion. Simultaneously, autonomous mobile robots operating in
GPS‐denied environments, such as warehouses, must depend on
inertial navigation for precise positioning. MEMS inertial sensors
directly address these needs: accelerometers detect linear dy-
namics, whereas gyroscopes capture rotational motion. When
fused, their data provide a comprehensive 3D state estimation
from orientation to velocity anddisplacement, which is crucial for
robotic operation.

3.1 | Accelerometers

MEMS‐based accelerometers represent one of the most mature
and widely adopted MEMS technologies, enabling velocity and
displacement estimation of moving objects through single and
double integration. Based on operational principles, MEMS ac-
celerometers are primarily categorized into capacitive, piezor-
esistive, piezoelectric, and resonant types [63]. Capacitive
accelerometers detect acceleration through gap‐varying capaci-
tance between a fixed electrode and an elastic diaphragm [64].

TABLE 1 | Comparison of MEMS ranging sensors.

Ref. Sensing mechanism Dimension Measurement range Resolution
[35] Laser N/A 0.2–2 m < 1 mm

[43] Laser 35 � 27 � 30 mm 0.05–2 m < 2 cm

[46] Ultrasonic Area:11 � 11 mm < 0.25 m < 0.3 mm

[41] Ultrasonic 4 � 4 � 0.5 mm < 0.3 m < 1 mm

[31] Capacitive N/A < 0.02 m 1.7 cm

[32] Capacitive Φ 30 � 9 mm < 0.015 m < 1 mm
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The diaphragm displacement under inertial forces alters capaci-
tance, with advantages including high sensitivity, stable output,
and environmental robustness. Piezoresistive accelerometers
detect acceleration via resistance changes in doped silicon beams
caused by inertial forces. Fabricated through silicon micro-
machining, they exhibit broad bandwidth but relatively lower
sensitivity [65]. Piezoelectric accelerometers generate surface
charges proportional to applied mechanical stress. When
acceleration‐induced vibrations act on a proof mass attached to
piezoelectric elements, charge output correlates linearly with
acceleration. Their high sensitivity, wide bandwidth, and low
noise density make them ideal for vibration analysis in industrial
machinery [66].The resonant accelerometers detect acceleration
by monitoring shifts in resonant frequency. When subjected to

external acceleration, the stress or mass distribution of the reso-
nant structure changes, inducing a corresponding frequency de-
viation that enables the measurement of acceleration. [50]. Their
exceptional sensitivity to microstrain makes them valuable for
robotic fine motion control.

3.2 | Gyroscopes

MEMS gyroscopes detect rotational motion by measuring
angular velocity, operating on the Coriolis effect principle: the
apparent deflection of moving objects relative to earth's rotation
[51]. A typical MEMS gyroscope operates by driving a proof

FIGURE 3 | MEMS inertial sensor. (a) Structure of typical MEMS accelerometer, gyroscope, and magnetometer. Reproduced from ref. [55].
Copyright 2019 Springer Nature. Reproduced from ref. [56]. Copyright 2025 Springer Nature. Reproduced from ref. [57]. Copyright 2022 Springer
Nature. (b) A miniature accelerometer achieves inertial flight control for a 10‐mg robot. Reproduced from ref. [58]. Copyright 2022 The American
Association for the Advancement of Science. (c) Snake‐like robot with IMU explores ice world [59]. Copyright 2024 The American Association for
the Advancement of Science. (d) Underwater robots navigate using an IMU. Reproduced from ref. [60]. Copyright 2024 Springer Nature.
(e) Positioning of humanoid robots. Reproduced from ref. [61]. Copyright 2025 Elsevier Ltd. (f) Attitude evaluation of quadruped robot.
Reproduced from ref. [62]. Copyright 2025 Elsevier Ltd.
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mass into oscillation along a primary axis (X‐axis) using elec-
trostatic, piezoelectric, or electromagnetic actuation. When the
gyroscope rotates about its sensitive axis (Z‐axis), the vibrating
mass experiences a Coriolis force perpendicular to both the
drive direction and rotation axis, inducing displacement along
an orthogonal axis (Y‐axis). The Coriolis force is expressed as
follows:

Fc = −2m(ω × v), (1)

where m represents the proof mass, ω denotes the angular ve-
locity of the rotating system, and v indicates the linear velocity
of the mass.

The resultant displacement of the mass is detected via capacitive
or piezoresistive sensing mechanisms, with subsequent signal
processing generating electrical outputs proportional to angular
velocity. These devices are critical for measuring and controlling
robotic orientation, providing real‐time angular velocity or
attitude variation data.

3.3 | Magnetometers

Magnetometers convert variations in the magnetic properties of
sensing elements induced by external factors, such as magnetic
fields, electric currents, and mechanical stresses into measur-
able voltage or current signals, primarily used for estimating
magnetic field strength and direction. Conventional magne-
tometers predominantly rely on the Hall effect, magnetoresis-
tance effect, or magnetoresistance effect, whereas MEMS‐based
magnetometers are primarily constructed based on the Lorentz
force principle. The operational mechanism involves the reso-
nant frequency shift of vibrating microstructures under Lorentz
forces when subjected to a magnetic field. This shift is detected
through capacitive or piezoresistive sensing to derive magnetic
field information [52]. Owing to their high sensitivity, compact
integration, and low power consumption, Lorentz force‐based
MEMS magnetometers have found applications in scenarios
such as drone attitude control and robotic azimuth estimation.

3.4 | Applications

Based on the data presented in Table 2, MEMS inertial sensors
are capable of meeting the navigation, positioning, and path‐
planning requirements of embodied AI robots due to their
small size and high sensitivity. MEMS accelerometers have good
linearity, enabling precise measurement of a robot's linear ac-
celeration and vibration states, which provides data support for

motion control and anticollision functions. MEMS gyroscopes
detect angular velocity based on the Coriolis effect. Their high
sensitivity and fast dynamic response allow for real‐time
tracking of a robot’s attitude changes, meeting the needs for
precise steering and balance adjustment. MEMS magnetometers
sense the direction of the Earth's magnetic field, providing an
absolute heading reference for the robot and compensating for
the cumulative errors in long‐term inertial navigation. By fusing
multimodal data from these three types of sensors, they
collectively form the core sensing unit for a robot's navigation,
positioning, and path planning, enabling autonomous obstacle
avoidance, stable movement, and precise orientation in complex
environments.

The true power of MEMS inertial sensors is unleashed when
accelerometers, gyroscopes, and magnetometers are integrated
into a single package—the IMU. Through sophisticated sensor
fusion algorithms, the IMU provides a robust and continuous
estimation of the robot's full 3D state, forming the backbone of
modern robotic navigation and control. The navigation function
of an IMU is demonstrated in various aspects of robotics,
including aerial, ground, and underwater applications. Inspired
by fruit flies, Fuller et al. proposed a gyroscope‐free visual‐in-
ertial flight control method where a 2‐mg accelerometer can
achieve flight control for a 10‐mg robot [58] as shown in
Figure 3b. Compared to conventional hovering controllers, this
approach reduces mass by more than 20 times and power con-
sumption by more than 100 times. Vaquero's research team has
studied IMU navigation for ground robots [59]. They developed
a risk‐aware autonomous robot that combines an IMU to safely
and effectively navigate and perceive icy environments
(Figure 3c), such as those on Enceladus, where surface geom-
etry and physical characteristics are highly uncertain. Liu et al.
also proposed a maneuverable underwater vehicle for near‐
seabed observations [60] as depicted in Figure 3d. Using IMU
navigation and real‐time path planning, this vehicle can quickly
detect strong disturbances, such as turbulence and wall effects,
enabling high‐quality observations of the seabed environment
from a distance of nearly 20 cm.

IMUs are widely used in humanoid and quadruped robots for
applications such as localization, pose estimation, and path
planning. For humanoid robot localization, Ma et al. designed a
leg odometry algorithm based on forward kinematics and IMU
feedback [61]. This method uses a Kalman filter to fuse kine-
matic information and IMU data, achieving high‐precision, real‐
time localization for humanoid robots as depicted in Figure 3e.
Its low hardware cost and high robustness provide a practical
solution for the localization of legged robots in indoor envi-
ronments. Zhang et al. proposed a 3D tunnel mapping system

TABLE 2 | Comparison of MEMS inertial sensors.

Ref. Type Sensing mechanism Dimension Resonant frequency Linearity Sensitivity
[53] Accelerometer Capacitive Proof mass:2000 � 500 μm 1506.58 Hz 0.03%–0.04% 21.3 mV/g

[54] Accelerometer Piezoresistive 360 � 300 � 40 μm 30 kHz N/A 98 mV/g

[47] Accelerometer Piezoelectric 2000 � 2000 � 450 μm 3048.83 Hz N/A 149.83 mV/g

[48] Gyroscope Piezoelectric 5000 � 5000 � 25 μm 12.14 kHz N/A N/A

[49] Magnetometer Capacitive Beam:2000 � 30 � 50 μm 37.487 kHz 0.42% 214.2 mV/mT
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for quadruped robots based on simultaneous localization and
mapping (SLAM) [62]. This system uses an IMU to perform
motion compensation and attitude constraints (Figure 3f), cor-
recting errors caused by robot movement to achieve 3D scan-
ning of tunnel environments.

In summary, from the sky to the deep sea, the IMU serves as the
core sensing unit for navigation in various types of robots,
continuously pushing the boundaries of robotic capabilities in
complex, dynamic, and extreme environments.

4 | Tactile Perception

In complex and unstructured environments, robots necessitate
precise perception of physical contact forces to achieve safe and
dexterous manipulation. Force sensors and tactile sensors are
core components forming this physical interaction perception
capability. The primary function of force sensor is to precisely
quantify the magnitude and direction of force vectors, including
normal and shear forces, applied at a specific point or over a
small area. Its output typically consists of discrete force or tor-
que components. Conversely, tactile sensors more closely mimic
the function of biological skin, aiming to acquire richer and
more spatially distributed physical information at the contact
interface. The core lies in perceiving the spatial distribution of
pressure or force, often integrating the capabilities to detect
object texture, roughness, slip status, and temperature. The
working principles of these two types of sensors are primarily
based on several core physical effects: piezoresistive, capacitive,
piezoelectric, and triboelectric effects. Based on these principles,
sensors are capable of converting mechanical stimuli into
measurable electrical signals.

4.1 | MEMS Force And Tactile Sensors

Due to form factor constraints, embodied AI robots have more
stringent requirements for sensor size and power consumption.
On one hand, sensors for parts, such as joints and skin, are
typically required to have excellent flexibility and integration.
For instance, sensors integrated into joints must often fit into
packages smaller than 10 � 10 mm with a profile under 2 mm,
whereas flexible sensors for e‐skin need to be ultra‐thin, typi-
cally less than 100 microns, and withstand thousands of bending
cycles. On the other hand, MEMS sensors have an inherent
energy‐saving property due to their microscopic size, which
meets the robotic system's demands for high integration and low
power consumption. A single MEMS‐based IMU can operate at
power levels as low as a few milliwatts (mW) or even hundreds
of microwatts (μW), with sleep modes drawing mere micro-
watts. This extreme efficiency is critical for extending opera-
tional lifetime, ensuring that the entire perception subsystem
does not become a dominant power load, thereby enabling
continuous operation for hours or days on a single battery
charge. MEMS technology provides a unified and robust tech-
nical foundation for the miniaturization, high precision, and
array formation of both force and tactile sensors [67]. The core
advantage of MEMS lies in utilizing micromachining processes
to integrate delicate microstructures, such as microbeams,

micromembranes, micromasses, and microelectrode arrays,
alongside signal processing circuits on the same chip or within a
compact package. This technological approach significantly re-
duces sensor size, allowing them to be embedded in robot joints,
dexterous end‐effectors or integrated as distributed sensing
units on the robot's surface skin, thus meeting the demands for
robot miniaturization and high integration. Furthermore,
MEMS technology enables the fabrication of microstructures
with high consistency and sensitivity. It significantly enhances
the accuracy, resolution, and response speed of force or torque
measurements, which is particularly suitable for fine operations
requiring microforce control, such as in minimally invasive
surgery. Finally, MEMS technology is especially well‐suited for
manufacturing large‐scale high‐density sensing unit arrays,
which is crucial for achieving high spatial resolution tactile
perception. Through precise micromachining techniques,
MEMS sensors can realize array arrangements of sensing units,
providing robots with skin‐like distributed tactile sensing
capabilities.

MEMS force and tactile sensors can be classified into piezor-
esistive, capacitive, and electromagnetic types based on their
working principles. As shown in Figure 4a, MEMS piezor-
esistive sensors detect external forces by measuring the change
in resistance caused by material deformation. Liu's research
team has conducted related studies on piezoresistive force
sensing for minimally invasive surgery. The research team
designed a highly integrated MEMS piezoresistive 3D force‐
sensing module [24] (Figure 4b). Its miniaturized size allows
it to be integrated into the tips of various surgical instruments.
The sensitivity and measurement range can be adjusted for
different surgeries by changing the elastic layer. This design
addresses the lack of force feedback experienced by surgeons
during operations.

The research team from Sungkyunkwan University in Korea has
conducted many innovative studies on sensing for minimally
invasive surgery. As shown in Figure 4c, they proposed a new
surgical forceps with 5‐DOF force/torque sensing capability [72].
Two compact 3‐DOF capacitive force sensors are integrated into
the proximal regions of the forceps' two jaws to measure the
grasping force and 3‐DOF manipulation force, resulting in a 5‐
DOF force/torque. Additionally, a novel surgical palpation
probe was proposed [73] as depicted in Figure 4d. Based on the
capacitive sensing principle, this probe achieves six‐axis force
measurement and is ultimately applied to in vivo tissue detection.

MEMS force and tactile sensors perform exceptionally well in
applications for robotic dexterous hands. Ge et al. proposed a
capacitive sensor that combines proximity and pressure sensing
[74], achieving both object proximity detection and contact force
detection (up to 12 N), which is used for accurate grasping
control in prosthetic hands (Figure 4e). As shown in Figure 4f,
Muroyama et al. proposed a real‐time force/temperature sensing
system based on MEMS‐LSI integration [75]. This system uses a
capacitive sensor array to achieve simultaneous 3D force and
temperature sensing, reducing the average force‐sensing error
from −0.98% to 0.072%. This ultimately enables precise grasping
by a robotic arm. When it comes to electromagnetic sensing
applications, Gong et al. proposed a flexible biomimetic triaxial
tactile sensor based on a solid‐liquid composite structure as
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shown in Figure 4g [68]. This sensor uses a magnetic field
detection principle to achieve high‐precision measurement of
3D contact forces. When an external force is applied to the
flexible skin, it displaces a permanent magnet, causing a change
in the magnetic field. A Hall sensor captures this magnetic
signal, which is then mapped into 3D force data through a
backpropagation (BP) neural network for decoupling. When
integrated into a robotic gripper, this sensor enables object
grasping. In addition, there are other types of MEMS tactile

sensors. As illustrated in Figure 4h, Hu et al. proposed a vision‐
tactile coupled sensor mechanism [69]. This sensor uses a pie-
zoresistive unit to provide a baseline force signal, whereas op-
tical markers generate a spatial weight based on displacement
fields. The coupling of these two outputs a high‐resolution force
distribution, which significantly improves the accuracy and
reliability of microforce measurements. This can be applied to
human‐robot interaction scenarios in fields such as robotic
manipulation, wearable devices, and virtual reality.

FIGURE 4 | MEMS force and tactile sensors. (a) Principle of piezoresistive MEMS force sensor. Reproduced from ref. [70]. Copyright 2025 Springer
Nature. (b) Highly integrated 3D MEMS force sensing module. Reproduced from [24]. Copyright 2023 Wiley‐VCH GmbH. Reproduced from ref. [71].
Copyright 2024 Springer Nature. (c) Application of capacitive sensor in surgical forceps. Reproduced from ref. [72]. Copyright 2018 IEEE.
(d) Application of capacitive sensor in surgical palpation. Reproduced from ref. [73]. Copyright 2018 IEEE. (e) Application of capacitive sensor in
prosthetic hand. Reproduced from ref. [74]. Copyright 2022 American Chemical Society. (f) Application of capacitive sensor in robotic arm.
Reproduced from ref. [75]. CC BY 4.0. (g) Application of electromagnetic sensor in robotic arm. Reproduced from ref. [68]. Copyright 2024 IEEE.
(h) Visual‐tactile sensor. Reproduced from ref. [69]. Copyright 2024 IEEE.
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Although MEMS force and tactile sensors offer high precision,
miniaturization, and integration advantages, their rigid sub-
strates and limited restrict their adaptability to large‐area,
deformable, or highly curved surfaces. These constraints have
driven the development of flexible force and tactile sensors,
which complement MEMS devices by providing conformal
coverage and skin‐like perception capabilities.

4.2 | Flexible Force And Tactile Sensors

Compared with MEMS sensors, flexible force and tactile sensors
are fabricated using soft stretchable materials (e.g., polymers,
elastomers, and conductive composites) and can conform to
complex three‐dimensional surfaces. Although MEMS devices
excel in localized high‐accuracy force/torque measurements and
stable long‐term performance, flexible sensors provide large‐
area coverage, multimodal sensing, and safer human interac-
tion. In many robotic systems, these two types of sensors are
complementary rather than mutually exclusive: MEMS sensors
are often embedded at critical contact points for precise mea-
surements, whereas flexible sensors form distributed arrays to
deliver spatially rich tactile maps.

The core working principle of flexible force/tactile sensors can be
summarized as the conversion of external mechanical stimuli,
such as pressure, stretching, bending, and vibration, into
measurable electrical signals, including changes in resistance,
capacitance, voltage, or current. This process mimics the mech-
anoreceptors in human skin, which convert skin deformation
into bioelectrical signals that are then transmitted to the brain via
nerves. Flexible force and tactile sensors represent a pivotal
branch of tactile sensing technology [76], characterized by their
conformability, stretchability, and biomimetic design principles.
Leveraging advanced functional materials and microstructure
engineering, these sensors emulate the transduction mechanisms
of biological skin to achieve distributed force mapping, texture
discrimination, and environmental interaction capabilities.
Based on the research of flexible force/tactile sensors, the concept
of e‐skin has been introduced. E‐skin is a soft, stretchable, and
ultrathin material that mimics the properties and functions of
human skin [77]. It can detect various stimuli, such as pressure,
temperature, humidity, and light, and respond to them in a
manner similar to human skin. This makes it widely applicable in
prosthetics, robotics, human‐machine interfaces, virtual reality,
health monitoring [78], and personalized medicine [79]. This
section introduces common types of flexible tactile sensors/e‐
skin and their applications in robotic sensing.

Common flexible tactile sensors include capacitive [80], tribo-
electric [81], piezoelectric [82], and resistive types [83]. Due to
their unique sensing mechanisms and flexible compatibility,
these technologies are profoundly transforming the environ-
mental perception and interaction capabilities of robotic systems.
One of the most widespread applications is tactile sensing. As
shown in Figure 5a, Boutry et al. proposed a capacitive electronic
skin with pyramidal microstructures [84]. Through a capacitive
array design, it can measure and distinguish normal and
tangential forces in real time. The pyramidal microstructures are
distributed along nature‐inspired phyllotaxis spirals, which

significantly optimizes the sensor's sensitivity, hysteresis, and
response time. Kong et al. proposed super‐resolution tactile
sensor arrays with sparsely distributed taxels powered by a uni-
versal intelligent framework (Figure 5b) [85]. Based on the
resistive sensing principle, this sensor array can dynamically
distinguish high‐density pressure stimuli, enabling precise touch
recognition.

Zhu's team has conducted in‐depth research on thermoelectric
sensing. As shown in Figure 5c, the team proposed a quadruple
tactile sensor integrated into a robotic hand [86]. This sensor uses
cross‐coupled thermistors to simultaneously and independently
sense multiple stimuli, including object material, contact pres-
sure, object temperature, and ambient temperature. When
combined with machine learning, the robotic hand can achieve
high‐precision waste sorting. Additionally, the team also pro-
posed a flexible 6‐DOF force/torque sensor with a simple struc-
ture, small size, and light weight [93]. This sensor uses stacked
thin‐film thermistors to sense the spatial strain of a flexible
piezo‐thermic material, achieving wide‐range high‐precision
flexible sensing of 6‐DOF force/torque. The team integrated the
sensor into the fingertips of a robot's dexterous hand to enable
delicate manipulation of objects. The working principle of ion-
tronic sensor is based on the ion‐electron interface effect. Its in-
ternal ionic electrolyte deforms under pressure, leading to a
significant change in the electrical double‐layer capacitance at
the electrode interface, thereby achieving high‐sensitivity detec-
tion of tiny pressures. As shown in Figure 5d, Bai et al. proposed a
high‐performance iontronic slip sensor [92]. By responding to
both static pressure and dynamic vibrations through changes in
capacitance, it achieves ultrahigh sensitivity and a fast response‐
relaxation time. Applied in robotic prostheses and tactile virtual
reality, this sensor achieves high‐precision texture recognition
through a real‐time visual interface, providing a new dimension
for enhanced human‐machine interaction.

In recent years, triboelectric flexible tactile sensors have achieved
significant research breakthroughs in robotic applications. Lee's
team designed an electronic skin that integrates two tactile sen-
sors: a transient voltage artificial neuron (TVAN) and a sustained
potential artificial neuron (SPAN) [87] as shown in Figure 5e.
Featuring self‐generated zero‐biased signals, this system can
perceive an object's complete information through a simple
touch. The team also proposed a triboelectric multimodal tactile
sensor with a multilayer structure [81], which was attached to a
robot fingertip and analyzed using deep learning. The structure
uses a differential contact area between two PTFE films to
generate a voltage signal, enabling curvature measurement. By
arranging a sensor array on the robot's finger, it can perceive the
entire object. Liu's team proposed a stretchable electronic armor
(E‐armor) with a 3D crosslinked structure for colonoscopic
continuum robots [88]. This system combines triboelectric
encoding intelligence with an innovative stretchable triboelectric
interlinked film (TIF) to form a triboelectric artificial synapse
(Figure 5f). This enables autonomous adjustment of the contin-
uum robot's posture while ensuring smooth operation.

In addition to the above types, there are other tactile sensors
that can achieve excellent performance in specific applications.
For example, as shown in Figure 5g, Dai et al. proposed an
optical/electronic artificial skin that integrates optical fibers into
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carbon nanotubes [89]. This allows the skin to sense force and
temperature while also detecting near‐infrared optical signals
from molecules, providing a dual mode of physical and chemical
sensing. When this sensor is integrated into a robotic arm, the
robot can grade fruits based on their ripeness, hardness, and

sugar content. Furthermore, bioinspired designs have also
recently attracted the attention of researchers [91]. As shown in
Figure 5h, Hong et al. proposed a bioinspired artificial mecha-
noreceptor array that vertically integrates synaptic transistors
with reduced graphene oxide channels to form artificial synaptic

FIGURE 5 | Flexible force and tactile sensors. (a) Capacitive tactile sensor. Reproduced from ref. [84]. Copyright 2018 The American Association
for the Advancement of Science. (b) Resistive super‐resolution tactile sensor array. Reproduced from ref. [85]. Copyright 2025 The American
Association for the Advancement of Science. (c) Thermoelectric quadruple tactile sensor. Reproduced from ref. [86]. Copyright 2020 The
American Association for the Advancement of Science. (d) Iontronic slip sensor. Reproduced from ref. [92]. Copyright 2023 Springer Nature.
(e) Triboelectric E‐skin applied in robotic finger. Reproduced from ref. [87]. Copyright 2024 Wiley‐VCH GmbH. (f) Triboelectric E‐armor applied
in colonoscopic continuum robot. Reproduced from ref. [88].Copyright 2025 Wiley‐VCH GmbH. (g) An optical/electronic artificial skin.
Reproduced from ref. [89]. Copyright 2025 Springer Nature. (h) A bioinspired artificial mechanoreceptor array. Reproduced from ref. [90].
Copyright 2025 Springer Nature.
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mechanoreceptors with built‐in synaptic functions [90]. Using
machine learning, it performs surface pattern and texture
recognition with fused slow‐ and fast‐adapting postsynaptic
values, offering high data efficiency and the potential for intel-
ligent skin.

Flexible tactile sensing technology has progressed from detecting
single physical quantities to a new stage of multidimensional
perception and intelligent fusion. Through multimodal sensing
mechanisms, biomimetic structural designs, and information
fusion strategies, researchers have successfully achieved
comprehensive perception of curvature, material, temperature,
and even chemical signals, greatly enhancing a robot's ability to
interact with the environment and make decisions in complex
scenarios. These developments provide crucial technical support
for the next generation of intelligent robots in industrial auto-
mation, domestic services, agricultural monitoring, and extreme‐
environment operations.

5 | Auditory Perception

Beyond physical contact and self‐motion, a robot's ability to
perceive and interact with its environment is profoundly
enhanced by auditory perception. The sense of hearing enables
critical functionalities for embodied AI, from understanding hu-
man voice commands in collaborative settings to detecting subtle
acoustic signatures of impending mechanical failure or locating
survivors in search‐and‐rescue missions. Based on the compara-
tive data in Table 3, MEMS acoustic devices demonstrate signif-
icant advantages in miniaturization and high performance.
MEMS microphones, with their chip‐scale packaging, achieve
extreme miniaturization while covering the core frequency range
of human speech. They can capture environmental sounds with
high fidelity, serving as a robot's “ears” for command reception,
sound source localization, and industrial condition monitoring.
Conversely, MEMSmicrospeakers also overcome size limitations,
capable of outputting high sound pressure levels of up to 114 dB
from a tiny footprint. Full‐range models (500–10000 Hz) combine
a low distortion rate of less than 1%, whereas low‐frequency
models complement this by enhancing bass performance. When
used together, these two types of devices provide high‐fidelity,
immersive voice feedback and audio output for robots.

Due to their small size, high loudness, low distortion, and wide
frequency response, MEMS microphones and microspeakers
collectively form the core foundation for embodied AI robots to
achieve natural and precise two‐way voice interaction. This
provides critical support for their environmental perception and

humanized interaction capabilities. This section reviews key
advancements in MEMS acoustic transducers, exploring their
design principles and transformative applications in robotics.

5.1 | MEMS Microphones

MEMS microphones can be categorized into capacitive, piezo-
electric, and piezoresistive types based on their transduction
mechanisms. Among these, capacitive MEMS microphones
forms the basis for many commercial microphones due to its
CMOS compatibility, high sensitivity, and scalability [98].
Capacitive MEMS microphones typically consist of a diaphragm
suspended above a fixed electrode, with an air gap enabling
pressure‐induced deflection. As shown in Figure 6a, this struc-
tural design allows sound waves to modulate capacitance, which
is then translated into an electrical signal. The illustrated cross‐
section includes perforated backplate openings to reduce
squeeze‐film damping, whereas the fabricated prototype dem-
onstrates millimeter‐scale integration suitable for dense array
deployment. Despite their wide adoption, these capacitive
MEMS microphones face inherent limitations, including the
requirement for a DC bias voltage to maintain transduction
sensitivity and susceptibility to squeeze‐film damping effects
that restrict high‐frequency response, which motivate ongoing
innovations in advanced packaging strategies to mitigate these
constraints.

Correspondingly, a representative structure of a MEMS micro-
phone with chip‐scale packaging is illustrated [29]. In Figure 6b,
the microphone comprises a MEMS diaphragm, an application‐
specific integrated circuit (ASIC), and an acoustic chamber in-
tegrated within a ceramic substrate. Sound enters through
perforated openings and travels into a Helmholtz chamber,
where it excites the diaphragm. The diaphragm's vibration alters
the electrical characteristics of the sensing element, which are
then processed by the ASIC. This compact integrated design
significantly minimizes the front volume, suppresses undesir-
able acoustic resonances, and ensures a linear frequency
response over a wide range. These advantages make it suitable
for robotic auditory assistance systems to perform environ-
mental perception.

Beyond conventional auditory functions, MEMS microphones
have emerged as critical diagnostic tools in industrial robotics,
enabling noncontact monitoring of mechanical systems through
acoustic signature analysis. An industrial application of MEMS
microphones in condition‐based maintenance systems is shown
in Figure 6c. In this setup, an omnidirectional capacitive

TABLE 3 | Comparison of microphones and microspeakers.

Ref. Device type Dimension SPL Frequency range THD (%)
[29] Microphone 2.05 � 2.8 mm N/A 100–10000 Hz N/A

[94] Microphone N/A N/A 10–15000 Hz N/A

[95] Microphone 32 � 21 mm 90 dB 1000–20000 Hz 1.41

[96] Microphone 30 � 30 mm 114 dB 100–2500 Hz N/A

[30] Microspeaker 4.5 � 4.5 mm > 107 dB 500–10000 Hz < 1

[97] Microspeaker 20 � 13 mm 98.4 dB 20–1000 Hz N/A
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microphone is embedded in a robotic grinding platform to
capture acoustic signals related to abrasive belt wear [94]. This
application exemplifies a powerful paradigm for robotic self‐
awareness: using onboard microphones to perform acoustic‐
based condition monitoring. By learning the sound of normal
operation, a robot can predictively diagnose its own or its tools'
health, enabling predictive maintenance and reducing opera-
tional downtime.

Based on the evolving demands for bioinspired robotic percep-
tion, the emergence of flexible piezoelectric MEMS micro-
phones represents a transformative approach to overcoming the
form‐factor limitations of conventional acoustic sensors in
deformable robotic systems. A flexible piezoelectric microphone
design capable of bidirectional operation is demonstrated in
Figure 6d. This structure supports high‐fidelity speech recog-
nition with over 98% accuracy and offers good mechanical

FIGURE 6 | Representative MEMS microphones and microspeakers. (a) A cross‐sectional structure of a MEMS capacitive microphone showing
diaphragm deflection and air‐gap modulation. Reproduced from ref. [99]. Copyright 2020 MDPI. (b) A MEMS microphone with chip‐scale
packaging integrating a Helmholtz chamber and ASIC for improved frequency response. Reproduced from ref. [29]. Copyright 2010 Springer
Nature. (c) Robotic grinding system using a MEMS microphone for acoustic‐based belt condition monitoring via machine learning. Reproduced
from ref. [94]. Copyright 2018 Elsevier Ltd. (d) A flexible piezoelectric MEMS microphone based on ZnO thin film, capable of both sound sensing
and speech recognition. Reproduced from ref. [95]. Copyright 2019 Hindawi and 2022 Springer Nature. (e) Piezoelectric nanofiber–based
intelligent hearing system. Reproduced from ref. [96]. CC BY 4.0. (f) Full‐range MEMS piezoelectric microspeaker with folded spring‐actuated
diaphragm structure for in‐ear applications. Reproduced from ref. [30]. Copyright 2023 IEEE. (g) MEMS piezoelectric microspeakers with flexible
packaging. Reproduced from ref. [97]. Copyright 2025 MDPI.
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flexibility, making it ideal for integration into soft robots [95]. In
the future, the developmental potential of MEMS microphones
lies in the creation of intelligent robotic auditory systems, which
will enable embodied intelligent robots to better communicate
with humans. For example, Chang et al. developed an intelli-
gent hearing system inspired by the human auditory system [96]
as shown in Figure 6e. This system mimics the cochlear struc-
ture, using piezoelectric nanofibers to transmit and convert
sound signals into electromechanical signals. This intelligent
auditory system surpasses human auditory directional capabil-
ities, demonstrating the excellent interactive performance of
future MEMS microphones.

5.2 | MEMS Microspeakers

Although MEMS microphones provide robots with the ability to
hear, MEMS microspeakers enable them to speak. To achieve
full‐range output in compact acoustic systems, a MEMS
microspeaker with a piston‐type actuator has been developed.
As illustrated in Figure 6f, the speaker employs four trapezoidal
piezoelectric plates connected via folded parylene springs to
drive a central diaphragm. This structure enhances low‐
frequency displacement while preventing acoustic leakage be-
tween chambers. Its minimal packaging and broadband per-
formance make it a strong candidate for next‐generation in‐ear
audio solutions [30]. Shih et al. proposed two structures of
piezo‐actuated microspeakers fabricated using the aerosol
deposition method and metal microfabrication in Figure 6g [97].
These microspeakers exhibit flexibility greater than 10 mm·N−1

at their edges, demonstrating good flexibility while significantly
enhancing their sound pressure level performance in the low‐
frequency range. For robots, microspeakers mean they can
emit clearer, more directional audio cues or warnings, or
simulate more natural vocalizations during human‐robot
interaction.

6 | Olfactory Perception

Although sight, hearing, and touch replicate and enhance
human‐like perception, olfactory perception, or machine olfac-
tion represents a new robotic sensing modality that can endow
robots with capabilities far beyond human limits, enabling ro-
bots to distinguish common odors/gases, detect specific gas
concentrations, and dynamically localize odor/gas sources.
Compared with traditional passive gas sensing systems, this
technology significantly enhances environmental comprehen-
sion of robot through its capacity to perceive, track, and pre-
cisely characterize gas concentrations, types, and spatial
distributions. The ability to “smell” allows a robot to detect
hazardous chemical leaks, identify explosives, or even diagnose
diseases from volatile organic compounds (VOCs)—tasks that
are either dangerous or impossible for humans. This noncontact
chemical sensing modality is critical for robot applications in
environmental monitoring, disaster response, and industrial
safety. The core of a robotic olfactory system comprises two key
components: gas sensor that act as the artificial nose and algo-
rithms for gas recognition and source localization. Gas sensors
obtain environmental chemical information, whereas

recognition and localization algorithms analyze gas types/con-
centrations and infer source positions. This section explores the
key technologies and challenges in building these “electronic
noses” for embodied agents.

6.1 | Gas Sensors

Gas sensors serve as the hardware base of robotic olfactory
systems, converting molecular interactions with sensing mate-
rials into processable electrical signals. Multiple types of gas
sensors have been developed [100, 101], as shown in Figure 7a,
primarily categorized into semiconductor [102], catalytic com-
bustion [103], electrochemical [104], and optical sensors [105]
based on their distinct operating principles, among others.
Semiconductor gas sensors utilize the conductivity changes of
metal oxide materials upon gas exposure, offering advantages in
cost‐efficiency, high sensitivity, and rapid response. Catalytic
combustion sensors detect flammable gases via temperature
changes induced by catalytic oxidation, providing accurate
quantification and fast response. Optical gas sensors detect gas
concentrations by exploiting either the inherent optical prop-
erties of target gases or gas‐induced alterations in the optical
characteristics of sensing materials. Spectral absorption‐based
sensors, that is, infrared gas sensors, dominate this category.
Electrochemical gas sensors detect gases by measuring current
variations generated during redox reactions in an electrolyte,
offering advantages such as linear output characteristics and
low power consumption. However, cross‐sensitivity among
coexisting gases with similar structures and properties remains
a critical challenge, leading to detection inaccuracies that hinder
practical olfactory applications in robots.

We compared two commercial CH4 sensors. The MEMS CH4

sensor achieved a resolution of 3% F.S. with a volume of
4 � 4 � 1 mm, whereas the electrochemical CH4 sensor ach-
ieved a resolution of 2% F.S. with a volume of 20 � 20 � 16 mm.
With a comparable resolution, the MEMS sensor achieved a
significantly smaller volume and lower power consumption.
Therefore, MEMS technology has led to significant improve-
ments in the size and performance of gas sensors. For instance,
MEMS enables the fabrication of microheaters on silicon sub-
strates, drastically reducing the power consumption of metal‐
oxide semiconductor (MOS) sensors, which traditionally
require high operating temperatures. MEMS processes are also
used to create microscale electrochemical cells and miniaturized
optical cavities for spectroscopic sensors. This miniaturization is
not just about size reduction and it is the key to creating low‐
cost, low‐power, and high‐density gas sensors.

6.2 | Gas Recognition and Mixed Gas Detection

Gas sensor array technology, commonly termed “electronic
nose”, employs multiple sensors to obtain multidimensional gas
features, which are subsequently processed by pattern recogni-
tion algorithms for gas identification. As shown in Figure 7bi,
Persaud et al. pioneered the first gas sensor array [106], which
can distinguish diverse odors consistently, using multiple
semiconductor gas sensors, demonstrating that odor
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discrimination can be reliably achieved without specific sensing
materials. Fahad et al. developed a 3.5 nm silicon channel
transistor‐based chemo‐sensitive field‐effect transistor array
[28], achieving high selectivity and low limit of detection (1 ppb)
for multigas detection at room temperature, as illustrated in
Figure 7bii. To address limitations in size, energy consumption,
and reliability of physical sensor arrays, virtual sensor arrays
have emerged as a research focus for gas sensors [111]. Li et al.
proposed a piezoelectric virtual sensor array (VSA) using quartz
crystal microbalance sensors based on Butterworth–Van Dyke
equivalent models [110]. By extracting multiple characteristics
from sensing films and employing support vector machines and
artificial neural networks (ANNs), the VSA successfully identi-
fied gases with similar structure with an accuracy of 90%

(Figure 7biii). To further advance miniaturization of virtual
sensor array, Li et al. employed multimodal frequency shifts in
piezoelectric resonant cantilevers as sensing responses to VOCs
[107] as depicted in Figure 7biv. Based on ANN algorithms, the
proposed VSA achieved precise discrimination of individual
VOCs and their mixtures with accuracies of 95.8% and 87.5%.

6.3 | Gas Source Localization

Gas source localization algorithms represent a pivotal technology
in robotic olfaction, enabling robots to identify and pinpoint
emission sources through sensor‐derived concentration data.

FIGURE 7 | Schematic diagram of the MEMS olfactory sensor: (a) Various types of gas sensors: (i) Semiconductor sensor. Reproduced from ref.
[102]. Copyright 2020 Springer Nature. (ii) Catalytic sensor. Reproduced from ref. [103]. Copyright 2024 Elsevier Ltd. (iii) Electrochemical sensor.
Reproduced from ref. [104]. Copyright 2024 American Chemical Society. (iv) Optical sensor. Reproduced from ref. [105]. CC BY 4.0. (b) Gas
recognition and mixed gas detection: (i) Electronic nose. Reproduced from ref. [106]. Copyright 1982 Springer Nature. (ii) Chemosensitive field‐
effect transistor array. Reproduced from ref. [28]. CC BY 4.0. (iii) Piezoelectric virtual sensor array. Reproduced from ref. [110]. Copyright 2021
American Chemical Society. (iv) Miniaturization of virtual sensor array. Reproduced from ref. [107]. Copyright 2022 American Chemical Society.
(c) Gas source localization algorithms. Reproduced from ref. [108]. Copyright 2020 Elsevier Ltd.
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This process typically involves three subtasks: (1) gas search
(detecting environmental presence), (2) gas tracking (following
plume trajectories), and (3) source verification (precisely deter-
mining source positions through sensor data integration).
Research in robotic odor localization began in the 1990s. Ishida
et al. developed biomimetic strategies including moth‐inspired
search, gradient‐based tracking, and upwind navigation [112].
Hayes et al. demonstrated enhanced localization efficiency
through swarm robotics using Moorebots platforms with collec-
tive communication [109]. Chen et al. developed multiple smoke
source localization algorithms by optimizing multimodal prob-
ability maps [108], achieving high‐precision source localization.
For smoke plume tracking in unknown environments, a local
perception window particle filtering approach was employed, as
shown in Figure 7c, with enhanced localization success rates
attained through integration of a modified firefly algorithm. The
average computation time including plume path estimation,
resampling, and target evaluation in every step is 35.9974 ms and
the average smoke source localization error is 0.7769 m. In
complex obstacle‐laden settings, the incorporation of deep Q‐
network algorithms ensured collision‐free robotic navigation
while maintaining precise smoke source identification.

6.4 | Application

Although significant progress has been made, the deployment of
robust olfactory robots outside the laboratory faces hurdles,
such as sensor drift, real‐world environmental dynamics, and
the sheer complexity of chemical landscapes. Future break-
throughs will likely emerge from the convergence of several
fields, such as AI‐driven sensor design and materials discovery.
Instead of relying on trial‐and‐error, machine learning will be
used to predict and design new sensing materials with targeted
affinities and sensitivities. AI will also enable self‐calibrating
sensors that can adapt to drift and environmental changes
over time. The ultimate goal is to mimic the staggering effi-
ciency and sensitivity of biological olfaction. This involves
developing neuromorphic olfactory chips that process signals in
an event‐driven manner as well as exploring bio‐hybrid systems
that integrate living olfactory cells or receptors directly with
electronic interfaces. The future of environmental monitoring
lies in deploying swarms of small low‐cost olfactory robots.
These swarms can collaboratively map a chemical plume in 3D,
locate its source with unprecedented speed and accuracy, and
create a dynamic distributed sensory network. In conclusion,
machine olfaction is arguably one of the most challenging yet
rewarding frontiers for embodied AI. Overcoming its challenges
will not only create powerful new tools for industry and safety
but also push the very boundaries of what we consider “robotic
perception”.

7 | Conclusion and Outlook

This review has systematically charted the critical role of MEMS
as the burgeoning sensory nervous system for embodied AI
robots. From mapping the external world with ranging sensors
to achieving self‐awareness through inertial sensors, and from
discerning physical interactions via force and tactile sensing to

perceiving the environment through auditory and olfactory
modalities, a clear narrative emerges: MEMS technology is the
fundamental enabler for the rich multimodal perception
demanded by next‐generation robots. Its intrinsic scalability,
performance, and miniaturization are breaking down the long‐
standing barriers to creating truly autonomous agents that can
perceive, reason, and act in the complex physical world.

The rise of MEMS sensors as a cornerstone for embodied AI
applications is not by chance; their intrinsic properties perfectly
complement the core requirements of embodied AI robots.
MEMS technology can fabricate complex mechanical and elec-
tronic structures on millimeter‐ or even micrometer‐scale chips
[25, 93], achieving exceptionally high spatial efficiency. For a
robot to achieve human‐like or animal‐like dexterity, its sensors
must be seamlessly integrated into confined spaces, such as
joints and fingertips, without compromising its range of motion
or appearance. MEMS accelerometers, gyroscopes, and force
sensors can fulfill this requirement. Furthermore, MEMS tech-
nology allows for the large‐scale deployment of miniaturized
sensors throughout a robot's body, forming a “sensing network”
that provides rich multidimensional environmental interaction
data to AI models [113], which is a prerequisite for achieving
true “embodied” perception. Meanwhile, MEMS sensors main-
tain excellent sensitivity while ensuring high integration, mak-
ing them more suitable for embodied AI robot applications
compared to traditional sensors.

7.1 | Challenges and Opportunities

Although MEMS technology has made significant strides in the
field of robotic sensing and actuation, several major challenges
must be overcome to fully unlock the potential of autonomous
embodied AI systems. When it comes to manufacturing pro-
cesses and mass production, a significant challenge lies in the
diverse fabrication techniques required for different categories
of MEMS sensors [114]. This heterogeneity makes it difficult to
establish a single standardized manufacturing platform. As a
result, the mass production of multiple sensor types on a single
production line is not feasible, hindering their large‐scale low‐
cost implementation in multifunctional integrated robots.
Regarding system integration, mechanically integrating MEMS
sensors with robots poses considerable difficulty [115]. In
spatially constrained areas, such as robotic joints and end‐
effecters, it is challenging to ensure both high‐precision stable
mounting and to prevent measurement errors caused by me-
chanical stress, vibration, or thermal deformation. Additionally,
the optimal mounting positions for different sensors often
conflict, wiring is complex, and the dynamic coupling effects
between the sensors and the robot's structure must be consid-
ered, which further increases the complexity of mechanical
integration.

Emerging trends are creating vast opportunities for the next
generation of robotic MEMS technology. The rise of edge
computing enables MEMS sensors to process data locally on the
robot [116, 117], significantly reducing latency and enhancing
real‐time control capabilities. This is particularly critical for
autonomous decision‐making in dynamic environments. The
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integration of advanced materials, such as two‐dimensional
materials, such as graphene [118–120], is expected to lead to
the development of ultrasensitive sensors. Furthermore, multi-
sensor fusion is becoming a key enabler for robust perception.
By intelligently combining data from diverse MEMS sensors
(such as IMUs, ToF, and capacitive proximity sensors), robots
can achieve more accurate and reliable environmental under-
standing, overcoming the limitations of any single sensing mo-
dality. Together, these innovations form the foundation for
MEMS technology to advance toward higher performance and
broader applications in the field of embodied AI robotics.

7.2 | Sensory Nervous System of Robots

Conceptualizing MEMS as an integrated “sensory nervous sys-
tem” is a biomimetic framework to understand the field's evo-
lution from discrete components to intelligently interconnected
architectures. Each MEMS sensor, such as an accelerometer,
gyroscope, magnetometer, or pressure sensor, can be viewed as
a specialized neuron that transduces a specific physical stimulus
(motion, angular rate, magnetic field, or pressure) into a digital
electrical signal. This fundamental transduction process is
analogous to how biological receptors convert external stimuli
into neural impulses [121]. The limitations of individual MEMS
“neurons” are evident as their performance can degrade over
time or in specific environments.

The integrated nervous system architecture is realized when
these disparate signals are intelligently combined through
sensor fusion. This process acts like the brain's analytical cen-
ter, leveraging the strengths of one sensor to compensate for the
weaknesses of another. For example, the long‐term low‐fre-
quency stability of an accelerometer can be used to correct the
high‐frequency drift output of a gyroscope. The absolute
heading data from a magnetometer can then be used to
compensate for gyroscopic drift and provide a global directional
reference. Combining the three axes of acceleration, angular
velocity, and magnetic field data in a 9‐axis IMU creates a
system that is more accurate, reliable, and robust than any
single sensor alone. This represents a critical shift from simply
collecting data points to generating actionable, intelligent in-
sights, realizing the biomimetic vision of a comprehensive
sensory nervous system.

Integrating diverse sensor outputs into a unified and reliable
data stream is the central challenge and defining characteristic
of an effective MEMS “sensory nervous system” as shown in
Figure 8. Cross‐modal data fusion is a computational process
that overcomes the inherent limitations of individual sensors,
such as noise, drift, and environmental sensitivity, to produce a
single optimal output. This process is fundamental to creating
robust and accurate systems for applications such as autono-
mous navigation, robotics, and consumer electronics. The
methods for achieving this fusion range from simple low‐cost
algorithms, such as complementary filters and Kalman filters,
to highly complex computationally intensive models, each with
its unique trade‐offs and application‐specific advantages. In

recent years, emerging algorithms, such as deep learning, have
begun to gain prominence [122, 123], offering new research
avenues for multimodal data fusion.

7.3 | Outlook

Looking forward, the trajectory of MEMS sensing for robotics is
poised for a revolutionary leap, driven by deep integration at
both the hardware and software levels. Instead of merely
improving individual sensor metrics, the future lies in creating
synergistic systems where perception and cognition are intrin-
sically linked. We foresee some pivotal frontiers shaping the
next era of robotic intelligence.

At the hardware level, the convergence of MEMS and in‐sensor
computing promises to redefine the very nature of sensory
data [124–126]. The imminent 3D integration of MEMS sensor
arrays with nonvolatile memory technologies, such as mem-
ristors, will shift computation from the cloud or central pro-
cessor directly into the sensor itself. This paradigm shift will
transform sensors from passive data collectors into active in-
terpreters. For instance, a robotic fingertip equipped with such
a device would no longer stream raw pressure data. Instead, it
could directly output semantic information such as “object
slipping,” “texture recognized as fabric,” or “sharp edge detec-
ted.” This on‐chip near‐zero‐latency processing will be critical
for robots requiring instantaneous reflexes, such as in high‐
speed manufacturing or delicate surgical procedures, funda-
mentally enabling a new class of safe and responsive physical
interactions.

At the application level, the rich multimodal data streams from
integrated MEMS “multi‐sense” platforms will unlock the full
potential of large language and multimodal models (LLMs/
LMMs) in the physical world [127, 128]. Although current LLMs
excel in the digital domain, their interaction with reality is
limited. A robot equipped with a full suite of MEMS sensors—
feeling the subtle vibrations of a motor (IMU), touching the
texture of an object (tactile skin), seeing its shape (LiDAR),
hearing a user's command (microphone), and even smelling a
potential gas leak (olfactory sensor)—can provide the rich,
grounded, and real‐time context that LLMs desperately need.
This fusion will spawn novel applications previously confined to
science fiction. Imagine a home‐assistant robot that not only
understands the command “check if the stove is on” but also
can physically go, feel for residual heat, “smell” for gas, and
provide a multisensory‐verified definitive answer. Or a search‐
and‐rescue robot that can navigate rubble, identify a survivor
by faint sounds and body heat and communicate its findings in
natural language. The integration of comprehensive MEMS
sensing with powerful AI models will be the catalyst that finally
allows robots to move beyond executing preprogrammed tasks
and begin to truly understand, reason about, and interact with
the unstructured physical world.

In essence, the future of embodied AI will be built upon this
powerful symbiosis: MEMS providing the rich, semantic‐aware
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“sensory neurons” and large models providing the “cognitive
brain”. This combination will not just make robots more capable
but will usher in an era of truly perceptive and intelligent
machines.
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